Including different kinds of preferences in a multi-objective ant algorithm for time and space assembly line balancing on different Nissan scenarios
نویسندگان
چکیده
Most of the decision support systems for balancing industrial assembly lines are designed to report a huge number of possible line configurations, according to several criteria. In this contribution, we tackle a more realistic variant of the classical assembly line problem formulation, time and space assembly line balancing. Our goal is to study the influence of incorporating user preferences based on Nissan automotive domain knowledge to guide the multi-objective search process with two different aims. First, to reduce the number of equally preferred assembly line configurations (i.e., solutions in the decision space) according to Nissan plants requirements. Second, to only provide the plant managers with configurations of their contextual interest in the objective space (i.e., solutions within their preferred Pareto front region) based on real-world economical variables. We face the said problem with a multi-objective ant colony optimisation algorithm. Using the real data of the Nissan Pathfinder engine, a solid empirical study is carried out to obtain the most useful solutions for the decision makers in six different Nissan scenarios around the world. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
A Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers
This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...
متن کاملA new diversity induction mechanism for a multi-objective ant colony algorithm to solve a real-world time and space assembly line balancing problem
Time and space assembly line balancing considers realistic multi-objective versions of the classical assembly line balancing industrial problems. It involves the joint optimisation of conflicting criteria such as the cycle time, the number of stations, and/or the area of these stations. The different problems included in this area also inherit the precedence constraints and the cycle time limit...
متن کاملSimultaneous Multi-Skilled Worker Assignment and Mixed-Model Two-Sided Assembly Line Balancing
This paper addresses a multi-objective mathematical model for the mixed-model two-sided assembly line balancing and worker assignment with different skills. In this problem, the operation time of each task is dependent on the skill of the worker. The following objective functions are considered in the mathematical model: (1) minimizing the number of mated-stations (2), minimizing the number of ...
متن کاملSolving a multi-objective mixed-model assembly line balancing and sequencing problem
This research addresses the mixed-model assembly line (MMAL) by considering various constraints. In MMALs, several types of products which their similarity is so high are made on an assembly line. As a consequence, it is possible to assemble and make several types of products simultaneously without spending any additional time. The proposed multi-objective model considers the balancing and sequ...
متن کاملAn algorithm for integrated worker assignment, mixed-model two-sided assembly line balancing and bottleneck analysis
This paper addresses a multi-objective mixed-model two-sided assembly line balancing and worker assignment with bottleneck analysis when the task times are dependent on the worker’s skill. This problem is known as NP-hard class, thus, a hybrid cyclic-hierarchical algorithm is presented for solving it. The algorithm is based on Particle Swarm Optimization (PSO) and Theory of Constraints (TOC) an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011